42
12
v1v2v3 (latest)

Helmholtzian Eigenmap: Topological feature discovery & edge flow learning from point cloud data

Abstract

The manifold Helmholtzian (1-Laplacian) operator Δ1\Delta_1 elegantly generalizes the Laplace-Beltrami operator to vector fields on a manifold M\mathcal M. In this work, we propose the estimation of the manifold Helmholtzian from point cloud data by a weighted 1-Laplacian L1\mathcal L_1. While higher order Laplacians have been introduced and studied, this work is the first to present a graph Helmholtzian constructed from a simplicial complex as a consistent estimator for the continuous operator in a non-parametric setting. Equipped with the geometric and topological information about M\mathcal M, the Helmholtzian is a useful tool for the analysis of flows and vector fields on M\mathcal M via the Helmholtz-Hodge theorem. In addition, the L1\mathcal L_1 allows the smoothing, prediction, and feature extraction of the flows. We demonstrate these possibilities on substantial sets of synthetic and real point cloud datasets with non-trivial topological structures; and provide theoretical results on the limit of L1\mathcal L_1 to Δ1\Delta_1.

View on arXiv
Comments on this paper