ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.06417
19
3

3D Head-Position Prediction in First-Person View by Considering Head Pose for Human-Robot Eye Contact

11 March 2021
Yuki Tamaru
Yasunori Ozaki
Yuki Okafuji
Junya Nakanishi
Y. Yoshikawa
Jun Baba
ArXivPDFHTML
Abstract

For a humanoid robot to make eye contact and initiate communication with a person, it is necessary to estimate the person's head position. However, eye contact becomes difficult due to the mechanical delay of the robot when the person is moving. Owing to these issues, it is important to conduct a head-position prediction to mitigate the effect of the delay in the robot motion. Based on the fact that humans turn their heads before changing direction while walking, we hypothesized that the accuracy of three-dimensional (3D) head-position prediction from a first-person view can be improved by considering the head pose. We compared our method with a conventional Kalman filter-based approach, and found our method to be more accurate. The experiment results show that considering the head pose helps improve the accuracy of 3D head-position prediction.

View on arXiv
Comments on this paper