ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.05895
22
0

WFA-IRL: Inverse Reinforcement Learning of Autonomous Behaviors Encoded as Weighted Finite Automata

10 March 2021
Tianyu Wang
Nikolay Atanasov
ArXivPDFHTML
Abstract

This paper presents a method for learning logical task specifications and cost functions from demonstrations. Constructing specifications by hand is challenging for complex objectives and constraints in autonomous systems. Instead, we consider demonstrated task executions, whose logic structure and transition costs need to be inferred by an autonomous agent. We employ a spectral learning approach to extract a weighted finite automaton (WFA), approximating the unknown task logic. Thereafter, we define a product between the WFA for high-level task guidance and a labeled Markov decision process for low-level control. An inverse reinforcement learning (IRL) problem is considered to learn a cost function by backpropagating the loss between agent and expert behaviors through the planning algorithm. Our proposed model, termed WFA-IRL, is capable of generalizing the execution of the inferred task specification in a suite of MiniGrid environments.

View on arXiv
Comments on this paper