ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.03817
14
20

Proactive and AoI-aware Failure Recovery for Stateful NFV-enabled Zero-Touch 6G Networks: Model-Free DRL Approach

2 February 2021
Amirhossein Shaghaghi
Abolfazl Zakeri
Nader Mokari
M. Javan
M. Behdadfar
Eduard Axel Jorswieck
ArXivPDFHTML
Abstract

In this paper, we propose a Zero-Touch, deep reinforcement learning (DRL)-based Proactive Failure Recovery framework called ZT-PFR for stateful network function virtualization (NFV)-enabled networks. To this end, we formulate a resource-efficient optimization problem minimizing the network cost function including resource cost and wrong decision penalty. As a solution, we propose state-of-the-art DRL-based methods such as soft-actor-critic (SAC) and proximal-policy-optimization (PPO). In addition, to train and test our DRL agents, we propose a novel impending-failure model. Moreover, to keep network status information at an acceptable freshness level for appropriate decision-making, we apply the concept of age of information to strike a balance between the event and scheduling based monitoring. Several key systems and DRL algorithm design insights for ZT-PFR are drawn from our analysis and simulation results. For example, we use a hybrid neural network, consisting long short-term memory layers in the DRL agents structure, to capture impending-failures time dependency.

View on arXiv
Comments on this paper