ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.03662
8
30

MAMBPO: Sample-efficient multi-robot reinforcement learning using learned world models

5 March 2021
Daniel Willemsen
M. Coppola
Guido de Croon
ArXivPDFHTML
Abstract

Multi-robot systems can benefit from reinforcement learning (RL) algorithms that learn behaviours in a small number of trials, a property known as sample efficiency. This research thus investigates the use of learned world models to improve sample efficiency. We present a novel multi-agent model-based RL algorithm: Multi-Agent Model-Based Policy Optimization (MAMBPO), utilizing the Centralized Learning for Decentralized Execution (CLDE) framework. CLDE algorithms allow a group of agents to act in a fully decentralized manner after training. This is a desirable property for many systems comprising of multiple robots. MAMBPO uses a learned world model to improve sample efficiency compared to model-free Multi-Agent Soft Actor-Critic (MASAC). We demonstrate this on two simulated multi-robot tasks, where MAMBPO achieves a similar performance to MASAC, but requires far fewer samples to do so. Through this, we take an important step towards making real-life learning for multi-robot systems possible.

View on arXiv
Comments on this paper