We present two related Stata modules, r_ml_stata and c_ml_stata, for fitting popular Machine Learning (ML) methods both in regression and classification settings. Using the recent Stata/Python integration platform (sfi) of Stata 16, these commands provide hyper-parameters' optimal tuning via K-fold cross-validation using greed search. More specifically, they make use of the Python Scikit-learn API to carry out both cross-validation and outcome/label prediction.
View on arXiv