ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.02835
8
7

A Novel Application of Image-to-Image Translation: Chromosome Straightening Framework by Learning from a Single Image

4 March 2021
Sifan Song
Daiyun Huang
Yalun Hu
Chunxiao Yang
Jia Meng
Fei Ma
Frans Coenen
Jiaming Zhang
Jionglong Su
    MedIm
ArXivPDFHTML
Abstract

In medical imaging, chromosome straightening plays a significant role in the pathological study of chromosomes and in the development of cytogenetic maps. Whereas different approaches exist for the straightening task, typically geometric algorithms are used whose outputs are characterized by jagged edges or fragments with discontinued banding patterns. To address the flaws in the geometric algorithms, we propose a novel framework based on image-to-image translation to learn a pertinent mapping dependence for synthesizing straightened chromosomes with uninterrupted banding patterns and preserved details. In addition, to avoid the pitfall of deficient input chromosomes, we construct an augmented dataset using only one single curved chromosome image for training models. Based on this framework, we apply two popular image-to-image translation architectures, U-shape networks and conditional generative adversarial networks, to assess its efficacy. Experiments on a dataset comprised of 642 real-world chromosomes demonstrate the superiority of our framework, as compared to the geometric method in straightening performance, by rendering realistic and continued chromosome details. Furthermore, our straightened results improve the chromosome classification by 0.98%-1.39% mean accuracy.

View on arXiv
Comments on this paper