ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.02383
23
29

Nonlinear MPC for Offset-Free Tracking of systems learned by GRU Neural Networks

3 March 2021
Fabio Bonassi
Caio Fabio Oliveira da Silva
R. Scattolini
ArXivPDFHTML
Abstract

The use of Recurrent Neural Networks (RNNs) for system identification has recently gathered increasing attention, thanks to their black-box modeling capabilities.Albeit RNNs have been fruitfully adopted in many applications, only few works are devoted to provide rigorous theoretical foundations that justify their use for control purposes. The aim of this paper is to describe how stable Gated Recurrent Units (GRUs), a particular RNN architecture, can be trained and employed in a Nonlinear MPC framework to perform offset-free tracking of constant references with guaranteed closed-loop stability. The proposed approach is tested on a pH neutralization process benchmark, showing remarkable performances.

View on arXiv
Comments on this paper