ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.01786
13
50

MetaSCI: Scalable and Adaptive Reconstruction for Video Compressive Sensing

2 March 2021
Zhengjue Wang
Hao Zhang
Ziheng Cheng
Bo Chen
Xin Yuan
ArXivPDFHTML
Abstract

To capture high-speed videos using a two-dimensional detector, video snapshot compressive imaging (SCI) is a promising system, where the video frames are coded by different masks and then compressed to a snapshot measurement. Following this, efficient algorithms are desired to reconstruct the high-speed frames, where the state-of-the-art results are achieved by deep learning networks. However, these networks are usually trained for specific small-scale masks and often have high demands of training time and GPU memory, which are hence {\bf \em not flexible} to iii) a new mask with the same size and iiiiii) a larger-scale mask. We address these challenges by developing a Meta Modulated Convolutional Network for SCI reconstruction, dubbed MetaSCI. MetaSCI is composed of a shared backbone for different masks, and light-weight meta-modulation parameters to evolve to different modulation parameters for each mask, thus having the properties of {\bf \em fast adaptation} to new masks (or systems) and ready to {\bf \em scale to large data}. Extensive simulation and real data results demonstrate the superior performance of our proposed approach. Our code is available at {\small\url{https://github.com/xyvirtualgroup/MetaSCI-CVPR2021}}.

View on arXiv
Comments on this paper