ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.01342
23
44

Reinforcement Learning for Adaptive Mesh Refinement

1 March 2021
Jiachen Yang
T. Dzanic
Brenden K. Petersen
Junpei Kudo
K. Mittal
V. Tomov
Jean-Sylvain Camier
T. Zhao
H. Zha
T. Kolev
Robert W. Anderson
D. Faissol
    AI4CE
ArXivPDFHTML
Abstract

Large-scale finite element simulations of complex physical systems governed by partial differential equations (PDE) crucially depend on adaptive mesh refinement (AMR) to allocate computational budget to regions where higher resolution is required. Existing scalable AMR methods make heuristic refinement decisions based on instantaneous error estimation and thus do not aim for long-term optimality over an entire simulation. We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning (RL) to train refinement policies directly from simulation. AMR poses a new problem for RL as both the state dimension and available action set changes at every step, which we solve by proposing new policy architectures with differing generality and inductive bias. The model sizes of these policy architectures are independent of the mesh size and hence can be deployed on larger simulations than those used at train time. We demonstrate in comprehensive experiments on static function estimation and time-dependent equations that RL policies can be trained on problems without using ground truth solutions, are competitive with a widely-used error estimator, and generalize to larger, more complex, and unseen test problems.

View on arXiv
Comments on this paper