15
4

A Brief Summary of Interactions Between Meta-Learning and Self-Supervised Learning

Abstract

This paper briefly reviews the connections between meta-learning and self-supervised learning. Meta-learning can be applied to improve model generalization capability and to construct general AI algorithms. Self-supervised learning utilizes self-supervision from original data and extracts higher-level generalizable features through unsupervised pre-training or optimization of contrastive loss objectives. In self-supervised learning, data augmentation techniques are widely applied and data labels are not required since pseudo labels can be estimated from trained models on similar tasks. Meta-learning aims to adapt trained deep models to solve diverse tasks and to develop general AI algorithms. We review the associations of meta-learning with both generative and contrastive self-supervised learning models. Unlabeled data from multiple sources can be jointly considered even when data sources are vastly different. We show that an integration of meta-learning and self-supervised learning models can best contribute to the improvement of model generalization capability. Self-supervised learning guided by meta-learner and general meta-learning algorithms under self-supervision are both examples of possible combinations.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.