ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.00136
26
13

Incorporating Causal Graphical Prior Knowledge into Predictive Modeling via Simple Data Augmentation

27 February 2021
Takeshi Teshima
Masashi Sugiyama
    CML
ArXivPDFHTML
Abstract

Causal graphs (CGs) are compact representations of the knowledge of the data generating processes behind the data distributions. When a CG is available, e.g., from the domain knowledge, we can infer the conditional independence (CI) relations that should hold in the data distribution. However, it is not straightforward how to incorporate this knowledge into predictive modeling. In this work, we propose a model-agnostic data augmentation method that allows us to exploit the prior knowledge of the CI encoded in a CG for supervised machine learning. We theoretically justify the proposed method by providing an excess risk bound indicating that the proposed method suppresses overfitting by reducing the apparent complexity of the predictor hypothesis class. Using real-world data with CGs provided by domain experts, we experimentally show that the proposed method is effective in improving the prediction accuracy, especially in the small-data regime.

View on arXiv
Comments on this paper