ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.12580
6
7

Contrastive Pre-training for Imbalanced Corporate Credit Ratings

18 February 2021
Bojing Feng
Wenfang Xue
    SSL
ArXivPDFHTML
Abstract

Corporate credit rating reflects the level of corporate credit and plays a crucial role in modern financial risk control. But real-world credit rating data usually shows long-tail distributions, which means heavy class imbalanced problem challenging the corporate credit rating system greatly. To tackle that, inspried by the recent advances of pre-train techniques in self-supervised representation learning, we propose a novel framework named Contrastive Pre-training for Corporate Credit Rating (CP4CCR), which utilizes the self-surpervision for getting over class imbalance. Specifically, we propose to, in the first phase, exert constrastive self-superivised pre-training without label information, which want to learn a better class-agnostic initialization. During this phase, two self-supervised task are developed within CP4CCR: (i) Feature Masking (FM) and (ii) Feature Swapping(FS). In the second phase, we can train any standard corporate redit rating model initialized by the pre-trained network. Extensive experiments conducted on the Chinese public-listed corporate rating dataset, prove that CP4CCR can improve the performance of standard corporate credit rating models, especially for class with few samples.

View on arXiv
Comments on this paper