ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.12534
21
10

Entanglement Diagnostics for Efficient Quantum Computation

24 February 2021
Joonho Kim
Yaron Oz
ArXivPDFHTML
Abstract

We consider information spreading measures in randomly initialized variational quantum circuits and introduce entanglement diagnostics for efficient variational quantum/classical computations. We establish a robust connection between entanglement measures and optimization accuracy by solving two eigensolver problems for Ising Hamiltonians with nearest-neighbor and long-range spin interactions. As the circuit depth affects the average entanglement of random circuit states, the entanglement diagnostics can identify a high-performing depth range for optimization tasks encoded in local Hamiltonians. We argue, based on an eigensolver problem for the Sachdev-Ye-Kitaev model, that entanglement alone is insufficient as a diagnostic to the approximation of volume-law entangled target states and that a large number of circuit parameters is needed for such an optimization task.

View on arXiv
Comments on this paper