ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.12232
11
2

Abelian Neural Networks

24 February 2021
Kenshi Abe
Takanori Maehara
Issei Sato
ArXivPDFHTML
Abstract

We study the problem of modeling a binary operation that satisfies some algebraic requirements. We first construct a neural network architecture for Abelian group operations and derive a universal approximation property. Then, we extend it to Abelian semigroup operations using the characterization of associative symmetric polynomials. Both models take advantage of the analytic invertibility of invertible neural networks. For each case, by repeating the binary operations, we can represent a function for multiset input thanks to the algebraic structure. Naturally, our multiset architecture has size-generalization ability, which has not been obtained in existing methods. Further, we present modeling the Abelian group operation itself is useful in a word analogy task. We train our models over fixed word embeddings and demonstrate improved performance over the original word2vec and another naive learning method.

View on arXiv
Comments on this paper