ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.11771
12
3

Improving Deep Learning Sound Events Classifiers using Gram Matrix Feature-wise Correlations

23 February 2021
Antonio Joia Neto
André G. C. Pacheco
D. Luvizon
ArXivPDFHTML
Abstract

In this paper, we propose a new Sound Event Classification (SEC) method which is inspired in recent works for out-of-distribution detection. In our method, we analyse all the activations of a generic CNN in order to produce feature representations using Gram Matrices. The similarity metrics are evaluated considering all possible classes, and the final prediction is defined as the class that minimizes the deviation with respect to the features seeing during training. The proposed approach can be applied to any CNN and our experimental evaluation of four different architectures on two datasets demonstrated that our method consistently improves the baseline models.

View on arXiv
Comments on this paper