ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.11660
33
15

Massively Parallel Correlation Clustering in Bounded Arboricity Graphs

23 February 2021
Mélanie Cambus
Davin Choo
Havu Miikonen
Jara Uitto
ArXivPDFHTML
Abstract

Identifying clusters of similar elements in a set is a common task in data analysis. With the immense growth of data and physical limitations on single processor speed, it is necessary to find efficient parallel algorithms for clustering tasks. In this paper, we study the problem of correlation clustering in bounded arboricity graphs with respect to the Massively Parallel Computation (MPC) model. More specifically, we are given a complete graph where the edges are either positive or negative, indicating whether pairs of vertices are similar or dissimilar. The task is to partition the vertices into clusters with as few disagreements as possible. That is, we want to minimize the number of positive inter-cluster edges and negative intra-cluster edges. Consider an input graph GGG on nnn vertices such that the positive edges induce a λ\lambdaλ-arboric graph. Our main result is a 3-approximation (in expectation\textit{in expectation}in expectation) algorithm to correlation clustering that runs in O(log⁡λ⋅poly(log⁡log⁡n))\mathcal{O}(\log \lambda \cdot \textrm{poly}(\log \log n))O(logλ⋅poly(loglogn)) MPC rounds in the strongly sublinear memory regime\textit{strongly sublinear memory regime}strongly sublinear memory regime. This is obtained by combining structural properties of correlation clustering on bounded arboricity graphs with the insights of Fischer and Noever (SODA '18) on randomized greedy MIS and the PIVOT\texttt{PIVOT}PIVOT algorithm of Ailon, Charikar, and Newman (STOC '05). Combined with known graph matching algorithms, our structural property also implies an exact algorithm and algorithms with worst case\textit{worst case}worst case (1+ϵ)(1+\epsilon)(1+ϵ)-approximation guarantees in the special case of forests, where λ=1\lambda=1λ=1.

View on arXiv
Comments on this paper