ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.10322
24
17

Learnable MFCCs for Speaker Verification

20 February 2021
Xuechen Liu
Md. Sahidullah
Tomi Kinnunen
ArXivPDFHTML
Abstract

We propose a learnable mel-frequency cepstral coefficient (MFCC) frontend architecture for deep neural network (DNN) based automatic speaker verification. Our architecture retains the simplicity and interpretability of MFCC-based features while allowing the model to be adapted to data flexibly. In practice, we formulate data-driven versions of the four linear transforms of a standard MFCC extractor -- windowing, discrete Fourier transform (DFT), mel filterbank and discrete cosine transform (DCT). Results reported reach up to 6.7\% (VoxCeleb1) and 9.7\% (SITW) relative improvement in term of equal error rate (EER) from static MFCCs, without additional tuning effort.

View on arXiv
Comments on this paper