ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.09322
25
8

Harnessing Tensor Structures -- Multi-Mode Reservoir Computing and Its Application in Massive MIMO

25 January 2021
Zhou Zhou
Lingjia Liu
Jiarui Xu
ArXivPDFHTML
Abstract

In this paper, we introduce a new neural network (NN) structure, multi-mode reservoir computing (Multi-Mode RC). It inherits the dynamic mechanism of RC and processes the forward path and loss optimization of the NN using tensor as the underlying data format. Multi-Mode RC exhibits less complexity compared with conventional RC structures (e.g. single-mode RC) with comparable generalization performance. Furthermore, we introduce an alternating least square-based learning algorithm for Multi-Mode RC as well as conduct the associated theoretical analysis. The result can be utilized to guide the configuration of NN parameters to sufficiently circumvent over-fitting issues. As a key application, we consider the symbol detection task in multiple-input-multiple-output (MIMO) orthogonal-frequency-division-multiplexing (OFDM) systems with massive MIMO employed at the base stations (BSs). Thanks to the tensor structure of massive MIMO-OFDM signals, our online learning-based symbol detection method generalizes well in terms of bit error rate even using a limited online training set. Evaluation results suggest that the Multi-Mode RC-based learning framework can efficiently and effectively combat practical constraints of wireless systems (i.e. channel state information (CSI) errors and hardware non-linearity) to enable robust and adaptive learning-based communications over the air.

View on arXiv
Comments on this paper