ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.08551
16
36

Weighted Recursive Least Square Filter and Neural Network based Residual Echo Suppression for the AEC-Challenge

17 February 2021
Ziteng Wang
Yueyue Na
Zhang Liu
Biao Tian
Q. Fu
ArXivPDFHTML
Abstract

This paper presents a real-time Acoustic Echo Cancellation (AEC) algorithm submitted to the AEC-Challenge. The algorithm consists of three modules: Generalized Cross-Correlation with PHAse Transform (GCC-PHAT) based time delay compensation, weighted Recursive Least Square (wRLS) based linear adaptive filtering and neural network based residual echo suppression. The wRLS filter is derived from a novel semi-blind source separation perspective. The neural network model predicts a Phase-Sensitive Mask (PSM) based on the aligned reference and the linear filter output. The algorithm achieved a mean subjective score of 4.00 and ranked 2nd in the AEC-Challenge.

View on arXiv
Comments on this paper