65
4

Restore from Restored: Single-image Inpainting

Abstract

Recent image inpainting methods show promising results due to the power of deep learning, which can explore external information available from a large training dataset. However, many state-of-the-art inpainting networks are still limited in exploiting internal information available in the given input image at test time. To mitigate this problem, we present a novel and efficient self-supervised fine-tuning algorithm that can adapt the parameters of fully pre-trained inpainting networks without using ground-truth target images. We update the parameters of the pre-trained state-of-the-art inpainting networks by utilizing existing self-similar patches within the given input image without changing network architecture and improve the inpainting quality by a large margin. Qualitative and quantitative experimental results demonstrate the superiority of the proposed algorithm, and we achieve state-of-the-art inpainting results on publicly available numerous benchmark datasets.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.