ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.07024
45
34

Interactive Learning from Activity Description

13 February 2021
Khanh Nguyen
Dipendra Kumar Misra
Robert Schapire
Miroslav Dudík
Patrick Shafto
ArXivPDFHTML
Abstract

We present a novel interactive learning protocol that enables training request-fulfilling agents by verbally describing their activities. Unlike imitation learning (IL), our protocol allows the teaching agent to provide feedback in a language that is most appropriate for them. Compared with reward in reinforcement learning (RL), the description feedback is richer and allows for improved sample complexity. We develop a probabilistic framework and an algorithm that practically implements our protocol. Empirical results in two challenging request-fulfilling problems demonstrate the strengths of our approach: compared with RL baselines, it is more sample-efficient; compared with IL baselines, it achieves competitive success rates without requiring the teaching agent to be able to demonstrate the desired behavior using the learning agent's actions. Apart from empirical evaluation, we also provide theoretical guarantees for our algorithm under certain assumptions about the teacher and the environment.

View on arXiv
Comments on this paper