58
46

Unsupervised Extractive Summarization using Pointwise Mutual Information

Abstract

Unsupervised approaches to extractive summarization usually rely on a notion of sentence importance defined by the semantic similarity between a sentence and the document. We propose new metrics of relevance and redundancy using pointwise mutual information (PMI) between sentences, which can be easily computed by a pre-trained language model. Intuitively, a relevant sentence allows readers to infer the document content (high PMI with the document), and a redundant sentence can be inferred from the summary (high PMI with the summary). We then develop a greedy sentence selection algorithm to maximize relevance and minimize redundancy of extracted sentences. We show that our method outperforms similarity-based methods on datasets in a range of domains including news, medical journal articles, and personal anecdotes.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.