ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06039
26
27

An Ensemble Deep Convolutional Neural Network Model for Electricity Theft Detection in Smart Grids

10 February 2021
H. Rouzbahani
H. Karimipour
Le Lei
ArXiv (abs)PDFHTML
Abstract

Smart grids extremely rely on Information and Communications Technology (ICT) and smart meters to control and manage numerous parameters of the network. However, using these infrastructures make smart grids more vulnerable to cyber threats especially electricity theft. Electricity Theft Detection (EDT) algorithms are typically used for such purpose since this Non-Technical Loss (NTL) may lead to significant challenges in the power system. In this paper, an Ensemble Deep Convolutional Neural Network (EDCNN) algorithm for ETD in smart grids has been proposed. As the first layer of the model, a random under bagging technique is applied to deal with the imbalance data, and then Deep Convolutional Neural Networks (DCNN) are utilized on each subset. Finally, a voting system is embedded, in the last part. The evaluation results based on the Area Under Curve (AUC), precision, recall, f1-score, and accuracy verify the efficiency of the proposed method compared to the existing method in the literature.

View on arXiv
Comments on this paper