ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.05573
64
20
v1v2v3 (latest)

A Witness Two-Sample Test

10 February 2021
Jonas M. Kubler
Wittawat Jitkrittum
Bernhard Schölkopf
Krikamol Muandet
ArXiv (abs)PDFHTML
Abstract

The Maximum Mean Discrepancy (MMD) has been the state-of-the-art nonparametric test for tackling the two-sample problem. Its statistic is given by the difference in expectations of the witness function, a real-valued function defined as a weighted sum of kernel evaluations on a set of basis points. Typically the kernel is optimized on a training set, and hypothesis testing is performed on a separate test set to avoid overfitting (i.e., control type-I error). That is, the test set is used to simultaneously estimate the expectations and define the basis points, while the training set only serves to select the kernel and is discarded. In this work, we argue that this data splitting scheme is overly conservative, and propose to use the training data to also define the weights and the basis points for better data efficiency. We show that 1) the new test is consistent and has a well-controlled type-I error; 2) the optimal witness function is given by a precision-weighted mean in the reproducing kernel Hilbert space associated with the kernel, and is closely related to kernel Fisher discriminant analysis; and 3) the test power of the proposed test is comparable or exceeds that of the MMD and other modern tests, as verified empirically on challenging synthetic and real problems (e.g., Higgs data).

View on arXiv
Comments on this paper