ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.05038
13
7

Last Query Transformer RNN for knowledge tracing

10 February 2021
SeungKee Jeon
    RALM
ArXivPDFHTML
Abstract

This paper presents an efficient model to predict a student's answer correctness given his past learning activities. Basically, I use both transformer encoder and RNN to deal with time series input. The novel point of the model is that it only uses the last input as query in transformer encoder, instead of all sequence, which makes QK matrix multiplication in transformer Encoder to have O(L) time complexity, instead of O(L^2). It allows the model to input longer sequence. Using this model I achieved the 1st place in the 'Riiid! Answer Correctness Prediction' competition hosted on kaggle.

View on arXiv
Comments on this paper