22
22

BembaSpeech: A Speech Recognition Corpus for the Bemba Language

Abstract

We present a preprocessed, ready-to-use automatic speech recognition corpus, BembaSpeech, consisting over 24 hours of read speech in the Bemba language, a written but low-resourced language spoken by over 30% of the population in Zambia. To assess its usefulness for training and testing ASR systems for Bemba, we train an end-to-end Bemba ASR system by fine-tuning a pre-trained DeepSpeech English model on the training portion of the BembaSpeech corpus. Our best model achieves a word error rate (WER) of 54.78%. The results show that the corpus can be used for building ASR systems for Bemba. The corpus and models are publicly released at https://github.com/csikasote/BembaSpeech.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.