ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.04174
11
10

Improving Artificial Teachers by Considering How People Learn and Forget

8 February 2021
Aurélien Nioche
Pierre-Alexandre Murena
Carlos de la Torre-Ortiz
Antti Oulasvirta
ArXivPDFHTML
Abstract

The paper presents a novel model-based method for intelligent tutoring, with particular emphasis on the problem of selecting teaching interventions in interaction with humans. Whereas previous work has focused on either personalization of teaching or optimization of teaching intervention sequences, the proposed individualized model-based planning approach represents convergence of these two lines of research. Model-based planning picks the best interventions via interactive learning of a user memory model's parameters. The approach is novel in its use of a cognitive model that can account for several key individual- and material-specific characteristics related to recall/forgetting, along with a planning technique that considers users' practice schedules. Taking a rule-based approach as a baseline, the authors evaluated the method's benefits in a controlled study of artificial teaching in second-language vocabulary learning (N=53).

View on arXiv
Comments on this paper