ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.01306
14
8

An Asymptotic Theory of Joint Sequential Changepoint Detection and Identification for General Stochastic Models

2 February 2021
A. Tartakovsky
ArXivPDFHTML
Abstract

The paper addresses a joint sequential changepoint detection and identification/isolation problem for a general stochastic model, assuming that the observed data may be dependent and non-identically distributed, the prior distribution of the change point is arbitrary, and the post-change hypotheses are composite. The developed detection-identification theory generalizes the changepoint detection theory developed by Tartakovsky (2019) to the case of multiple composite post-change hypotheses when one has not only to detect a change as quickly as possible but also to identify (or isolate) the true post-change distribution. We propose a multi-hypothesis change detection-identification rule and show that it is nearly optimal, minimizing moments of the delay to detection as the probability of a false alarm and the probabilities of misidentification go to zero.

View on arXiv
Comments on this paper