ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.01144
16
0

Double bootstrapping for visualising the distribution of descriptive statistics of functional data

1 February 2021
H. Shang
ArXiv (abs)PDFHTML
Abstract

We propose a double bootstrap procedure for reducing coverage error in the confidence intervals of descriptive statistics for independent and identically distributed functional data. Through a series of Monte Carlo simulations, we compare the finite sample performance of single and double bootstrap procedures for estimating the distribution of descriptive statistics for independent and identically distributed functional data. At the cost of longer computational time, the double bootstrap with the same bootstrap method reduces confidence level error and provides improved coverage accuracy than the single bootstrap. Illustrated by a Canadian weather station data set, the double bootstrap procedure presents a tool for visualising the distribution of the descriptive statistics for the functional data.

View on arXiv
Comments on this paper