142
47

Automatic Curation of Large-Scale Datasets for Audio-Visual Representation Learning

Abstract

Large-scale datasets are the cornerstone of representation learning. Existing self-supervised approaches extract learning signals by making certain assumptions about the data, e.g., spatio-temporal continuity and multimodal correspondence. However, finding large amounts of data that satisfy such assumptions is not straightforward, and this restricts the community to rely on datasets collected through laborious annotation and/or manual filtering processes. In this paper, we propose a subset optimization approach for automatic dataset curation. Focusing on audio-visual representation learning, we find a subset that provides the maximum mutual information between audio and visual channels in videos. We show that self-supervised models trained on our data, despite being automatically constructed, achieve competitive downstream performances compared to existing datasets that require annotation and/or manual filtering. The most significant benefit of our approach is scalability. We release a dataset of 100M videos with high audio-visual correspondence.

View on arXiv
Comments on this paper