48
34

QFold: Quantum Walks and Deep Learning to Solve Protein Folding

Abstract

Predicting the 3D structure of proteins is one of the most important problems in current biochemical research. In this article, we explain how to combine recent deep learning advances with the well known technique of quantum walks applied to a Metropolis algorithm. The result, QFold, is a fully scalable hybrid quantum algorithm that, in contrast to previous quantum approaches, does not require a lattice model simplification and instead relies on the much more realistic assumption of parameterization in terms of torsion angles of the amino acids. We compare it with its classical analog for different annealing schedules and find a polynomial quantum advantage, and implement a minimal realization of the quantum Metropolis in the IBMQ Casablanca quantum system.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.