ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.10007
19
3

Adaptive Scheduling for Machine Learning Tasks over Networks

25 January 2021
Konstantinos Gatsis
ArXivPDFHTML
Abstract

A key functionality of emerging connected autonomous systems such as smart transportation systems, smart cities, and the industrial Internet-of-Things, is the ability to process and learn from data collected at different physical locations. This is increasingly attracting attention under the terms of distributed learning and federated learning. However, in this setup data transfer takes place over communication resources that are shared among many users and tasks or subject to capacity constraints. This paper examines algorithms for efficiently allocating resources to linear regression tasks by exploiting the informativeness of the data. The algorithms developed enable adaptive scheduling of learning tasks with reliable performance guarantees.

View on arXiv
Comments on this paper