ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.08969
33
2
v1v2v3 (latest)

A novel DL approach to PE malware detection: exploring Glove vectorization, MCC_RCNN and feature fusion

22 January 2021
Yuzhou Lin
Xiaolin Chang
ArXiv (abs)PDFHTML
Abstract

In recent years, malware becomes more threatening. Concerning the increasing malware variants, there comes Machine Learning (ML)-based and Deep Learning (DL)-based approaches for heuristic detection. Nevertheless, the prediction accuracy of both needs to be improved. In response to the above issues in the PE malware domain, we propose the DL-based approaches for detection and use static-based features fed up into models. The contributions are as follows: we recapitulate existing malware detection methods. That is, we propose a vec-torized representation model of the malware instruction layer and semantic layer based on Glove. We implement a neural network model called MCC_RCNN (Malware Detection and Recurrent Convolutional Neural Network), comprising of the combination with CNN and RNN. Moreover, we provide a description of feature fusion in static behavior levels. With the numerical results generated from several comparative experiments towards evaluating the Glove-based vectoriza-tion, MCC_RCNN-based classification methodology and feature fusion stages, our proposed classification methods can obtain a higher prediction accuracy than the other baseline methods.

View on arXiv
Comments on this paper