ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.08861
28
1
v1v2v3 (latest)

Fixed-Domain Asymptotics Under Vecchia's Approximation of Spatial Process Likelihoods

21 January 2021
Lu Zhang
Wenpin Tang
S. Banerjee
ArXiv (abs)PDFHTML
Abstract

Statistical modeling for massive spatial data sets has generated a substantial literature on scalable spatial processes based upon Vecchia's approximation. Vecchia's approximation for Gaussian process models enables fast evaluation of the likelihood by restricting dependencies at a location to its neighbors. We establish inferential properties of microergodic spatial covariance parameters within the paradigm of fixed-domain asymptotics when they are estimated using Vecchia's approximation. The conditions required to formally establish these properties are explored, theoretically and empirically, and the effectiveness of Vecchia's approximation is further corroborated from the standpoint of fixed-domain asymptotics.

View on arXiv
Comments on this paper