ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.08236
16
4

Probabilistic Solar Power Forecasting: Long Short-Term Memory Network vs Simpler Approaches

20 January 2021
Vinayak Sharma
J. Á. G. Ordiano
Ralf Mikut
Umit Cali
    BDL
ArXiv (abs)PDFHTML
Abstract

The high penetration of volatile renewable energy sources such as solar make methods for coping with the uncertainty associated with them of paramount importance. Probabilistic forecasts are an example of these methods, as they assist energy planners in their decision-making process by providing them with information about the uncertainty of future power generation. Currently, there is a trend towards the use of deep learning probabilistic forecasting methods. However, the point at which the more complex deep learning methods should be preferred over more simple approaches is not yet clear. Therefore, the current article presents a simple comparison between a long short-term memory neural network and other more simple approaches. The comparison consists of training and comparing models able to provide one-day-ahead probabilistic forecasts for a solar power system. Moreover, the current paper makes use of an open-source dataset provided during the Global Energy Forecasting Competition of 2014 (GEFCom14).

View on arXiv
Comments on this paper