ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.07973
11
12

Divide and Conquer: An Ensemble Approach for Hostile Post Detection in Hindi

20 January 2021
Varad Bhatnagar
Prince Kumar
Sairam Moghili
P. Bhattacharyya
ArXivPDFHTML
Abstract

Recently the NLP community has started showing interest towards the challenging task of Hostile Post Detection. This paper present our system for Shared Task at Constraint2021 on "Hostile Post Detection in Hindi". The data for this shared task is provided in Hindi Devanagari script which was collected from Twitter and Facebook. It is a multi-label multi-class classification problem where each data instance is annotated into one or more of the five classes: fake, hate, offensive, defamation, and non-hostile. We propose a two level architecture which is made up of BERT based classifiers and statistical classifiers to solve this problem. Our team Álbatross', scored 0.9709 Coarse grained hostility F1 score measure on Hostile Post Detection in Hindi subtask and secured 2nd rank out of 45 teams for the task. Our submission is ranked 2nd and 3rd out of a total of 156 submissions with Coarse grained hostility F1 score of 0.9709 and 0.9703 respectively. Our fine grained scores are also very encouraging and can be improved with further finetuning. The code is publicly available.

View on arXiv
Comments on this paper