33
22

Illuminating the Space of Beatable Lode Runner Levels Produced By Various Generative Adversarial Networks

Abstract

Generative Adversarial Networks (GANs) are capable of generating convincing imitations of elements from a training set, but the distribution of elements in the training set affects to difficulty of properly training the GAN and the quality of the outputs it produces. This paper looks at six different GANs trained on different subsets of data from the game Lode Runner. The quality diversity algorithm MAP-Elites was used to explore the set of quality levels that could be produced by each GAN, where quality was defined as being beatable and having the longest solution path possible. Interestingly, a GAN trained on only 20 levels generated the largest set of diverse beatable levels while a GAN trained on 150 levels generated the smallest set of diverse beatable levels, thus challenging the notion that more is always better when training GANs.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.