ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.07752
22
6

Characterizing and Measuring the Similarity of Neural Networks with Persistent Homology

19 January 2021
David Pérez-Fernández
Asier Gutiérrez-Fandiño
Jordi Armengol-Estapé
Marta Villegas
ArXivPDFHTML
Abstract

Characterizing the structural properties of neural networks is crucial yet poorly understood, and there are no well-established similarity measures between networks. In this work, we observe that neural networks can be represented as abstract simplicial complex and analyzed using their topological 'fingerprints' via Persistent Homology (PH). We then describe a PH-based representation proposed for characterizing and measuring similarity of neural networks. We empirically show the effectiveness of this representation as a descriptor of different architectures in several datasets. This approach based on Topological Data Analysis is a step towards better understanding neural networks and serves as a useful similarity measure.

View on arXiv
Comments on this paper