ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.06993
9
2

Deep Compression of Neural Networks for Fault Detection on Tennessee Eastman Chemical Processes

18 January 2021
Mingxuan Li
Yuanxun Shao
ArXivPDFHTML
Abstract

Artificial neural network has achieved the state-of-art performance in fault detection on the Tennessee Eastman process, but it often requires enormous memory to fund its massive parameters. In order to implement online real-time fault detection, three deep compression techniques (pruning, clustering, and quantization) are applied to reduce the computational burden. We have extensively studied 7 different combinations of compression techniques, all methods achieve high model compression rates over 64% while maintain high fault detection accuracy. The best result is applying all three techniques, which reduces the model sizes by 91.5% and remains a high accuracy over 94%. This result leads to a smaller storage requirement in production environments, and makes the deployment smoother in real world.

View on arXiv
Comments on this paper