ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.06986
16
9

Interactive slice visualization for exploring machine learning models

18 January 2021
C. Hurley
Mark O'Connell
Katarina Domijan
    FAtt
ArXivPDFHTML
Abstract

Machine learning models fit complex algorithms to arbitrarily large datasets. These algorithms are well-known to be high on performance and low on interpretability. We use interactive visualization of slices of predictor space to address the interpretability deficit; in effect opening up the black-box of machine learning algorithms, for the purpose of interrogating, explaining, validating and comparing model fits. Slices are specified directly through interaction, or using various touring algorithms designed to visit high-occupancy sections or regions where the model fits have interesting properties. The methods presented here are implemented in the R package \pkg{condvis2}.

View on arXiv
Comments on this paper