ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.06977
11
12

Semi-Automatic Annotation For Visual Object Tracking

18 January 2021
K. G. Ince
Aybora Koksal
Arda Fazla
Aydin Alatan
ArXivPDFHTML
Abstract

We propose a semi-automatic bounding box annotation method for visual object tracking by utilizing temporal information with a tracking-by-detection approach. For detection, we use an off-the-shelf object detector which is trained iteratively with the annotations generated by the proposed method, and we perform object detection on each frame independently. We employ Multiple Hypothesis Tracking (MHT) to exploit temporal information and to reduce the number of false-positives which makes it possible to use lower objectness thresholds for detection to increase recall. The tracklets formed by MHT are evaluated by human operators to enlarge the training set. This novel incremental learning approach helps to perform annotation iteratively. The experiments performed on AUTH Multidrone Dataset reveal that the annotation workload can be reduced up to 96% by the proposed approach.

View on arXiv
Comments on this paper