ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.06950
83
2
v1v2v3v4 (latest)

Perturbations and Causality in Gaussian Latent Variable Models

18 January 2021
Armeen Taeb
Juan L. Gamella
C. Heinze-Deml
Peter Buhlmann
    CML
ArXiv (abs)PDFHTML
Abstract

With observational data alone, causal inference is a challenging problem. The task becomes easier when having access to data collected from perturbations of the underlying system, even when the nature of these is unknown. Existing methods either do not allow for the presence of latent variables or assume that these remain unperturbed. Further, they assume perturbations on all observed variables. However, these assumptions are hard to justify if the nature of the perturbations is unknown. We provide results that enable scoring causal structures in this setting. Specifically, we propose a maximum-likelihood estimator in a structural equation model that exploits system-wide invariances to output an equivalence class of causal structures from perturbation data. Furthermore, under certain structural assumptions on the population model, we provide a simple graphical characterization of all the DAGs in the interventional equivalence class. We illustrate the utility of our framework on synthetic data as well as real data involving California reservoirs and protein expressions.

View on arXiv
Comments on this paper