44
5
v1v2v3 (latest)

Fast offline Transformer-based end-to-end automatic speech recognition for real-world applications

Abstract

With the recent advances in technology, automatic speech recognition (ASR) has been widely used in real-world applications. The efficiency of converting large amounts of speech into text accurately with limited resources has become more important than ever. This paper proposes a method to rapidly recognize a large speech database via a Transformer-based end-to-end model. Transformers have improved the state-of-the-art performance in many fields. However, they are not easy to use for long sequences. In this paper, various techniques to speed up the recognition of real-world speeches are proposed and tested, including decoding via multiple-utterance batched beam search, detecting end-of-speech based on a connectionist temporal classification (CTC), restricting the CTC prefix score, and splitting long speeches into short segments. Experiments are conducted with the Librispeech English and the real-world Korean ASR tasks to verify the proposed methods. From the experiments, the proposed system can convert 8 hours of speeches spoken at real-world meetings into text in less than 3 minutes with a 10.73% character error rate, which is 27.1% relatively lower than that of conventional systems.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.