ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.04792
145
64
v1v2v3v4 (latest)

Learning Efficient Representations for Keyword Spotting with Triplet Loss

12 January 2021
R. Vygon
N. Mikhaylovskiy
    DMLSSL
ArXiv (abs)PDFHTML
Abstract

In the past few years, triplet loss-based metric embeddings have become a de-facto standard for several important computer vision problems, most notably, person reidentification. On the other hand, in the area of speech recognition the metric embeddings generated by the triplet loss are rarely used even for classification problems. We fill this gap showing that a combination of two representation learning techniques: a triplet loss-based embedding and a variant of kNN for classification instead of cross-entropy loss significantly (by 26% to 38%) improves the classification accuracy for convolutional networks on a LibriSpeech-derived LibriWords datasets. To do so, we propose a novel phonetic similarity based triplet mining approach. We also match the current best published SOTA for Google Speech Commands dataset V2 10+2-class classification with an architecture that is about 6 times more compact and improve the current best published SOTA for 35-class classification on Google Speech Commands dataset V2 by over 40%.

View on arXiv
Comments on this paper