ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.04450
6
20

Two-stage CNN-based wood log recognition

12 January 2021
Georg Wimmer
R. Schraml
H. Hofbauer
A. Petutschnigg
A. Uhl
ArXivPDFHTML
Abstract

The proof of origin of logs is becoming increasingly important. In the context of Industry 4.0 and to combat illegal logging there is an increasing motivation to track each individual log. Our previous works in this field focused on log tracking using digital log end images based on methods inspired by fingerprint and iris-recognition. This work presents a convolutional neural network (CNN) based approach which comprises a CNN-based segmentation of the log end combined with a final CNN-based recognition of the segmented log end using the triplet loss function for CNN training. Results show that the proposed two-stage CNN-based approach outperforms traditional approaches.

View on arXiv
Comments on this paper