ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.02137
27
6

Smoothed functional-based gradient algorithms for off-policy reinforcement learning: A non-asymptotic viewpoint

6 January 2021
Nithia Vijayan
A. PrashanthL.
    OffRL
ArXivPDFHTML
Abstract

We propose two policy gradient algorithms for solving the problem of control in an off-policy reinforcement learning (RL) context. Both algorithms incorporate a smoothed functional (SF) based gradient estimation scheme. The first algorithm is a straightforward combination of importance sampling-based off-policy evaluation with SF-based gradient estimation. The second algorithm, inspired by the stochastic variance-reduced gradient (SVRG) algorithm, incorporates variance reduction in the update iteration. For both algorithms, we derive non-asymptotic bounds that establish convergence to an approximate stationary point. From these results, we infer that the first algorithm converges at a rate that is comparable to the well-known REINFORCE algorithm in an off-policy RL context, while the second algorithm exhibits an improved rate of convergence.

View on arXiv
Comments on this paper