ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.02035
18
2

Scalable Feature Matching Across Large Data Collections

6 January 2021
D. Degras
ArXiv (abs)PDFHTMLGithub (2★)
Abstract

This paper is concerned with matching feature vectors in a one-to-one fashion across large collections of datasets. Formulating this task as a multidimensional assignment problem with decomposable costs (MDADC), we develop extremely fast algorithms with time complexity linear in the number nnn of datasets and space complexity a small fraction of the data size. These remarkable properties hinge on using the squared Euclidean distance as dissimilarity function, which can reduce (n2){n \choose 2}(2n​) matching problems between pairs of datasets to nnn problems and enable calculating assignment costs on the fly. To our knowledge, no other method applicable to the MDADC possesses these linear scaling and low-storage properties necessary to large-scale applications. In numerical experiments, the novel algorithms outperform competing methods and show excellent computational and optimization performances. An application of feature matching to a large neuroimaging database is presented. The algorithms of this paper are implemented in the R package matchFeat available at https://github.com/ddegras/matchFeat.

View on arXiv
Comments on this paper