ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.01356
54
12
v1v2 (latest)

Fixed-MAML for Few Shot Classification in Multilingual Speech Emotion Recognition

5 January 2021
Anugunj Naman
Chetan Sinha
ArXiv (abs)PDFHTML
Abstract

In this paper, we analyze the feasibility of applying few-shot learning to speech emotion recognition task (SER). The current speech emotion recognition models work exceptionally well but fail when then input is multilingual. Moreover, when training such models, the models' performance is suitable only when the training corpus is vast. This availability of a big training corpus is a significant problem when choosing a language that is not much popular or obscure. We attempt to solve this challenge of multilingualism and lack of available data by turning this problem into a few-shot learning problem. We suggest relaxing the assumption that all N classes in an N-way K-shot problem be new and define an N+F way problem where N and F are the number of emotion classes and predefined fixed classes, respectively. We propose this modification to the Model-Agnostic MetaLearning (MAML) algorithm to solve the problem and call this new model F-MAML. This modification performs better than the original MAML and outperforms on EmoFilm dataset.

View on arXiv
Comments on this paper