ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.00816
179
205

A Joint Training Dual-MRC Framework for Aspect Based Sentiment Analysis

4 January 2021
Yue Mao
Yi Shen
Chao Yu
Longjun Cai
ArXivPDFHTML
Abstract

Aspect based sentiment analysis (ABSA) involves three fundamental subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification. Early works only focused on solving one of these subtasks individually. Some recent work focused on solving a combination of two subtasks, e.g., extracting aspect terms along with sentiment polarities or extracting the aspect and opinion terms pair-wisely. More recently, the triple extraction task has been proposed, i.e., extracting the (aspect term, opinion term, sentiment polarity) triples from a sentence. However, previous approaches fail to solve all subtasks in a unified end-to-end framework. In this paper, we propose a complete solution for ABSA. We construct two machine reading comprehension (MRC) problems and solve all subtasks by joint training two BERT-MRC models with parameters sharing. We conduct experiments on these subtasks, and results on several benchmark datasets demonstrate the effectiveness of our proposed framework, which significantly outperforms existing state-of-the-art methods.

View on arXiv
Comments on this paper